algebra of traceless matrices

algebra of traceless matrices
алгебра бесшпуровых матриц, алгебра бесследовых матриц

The New English-Russian Dictionary of Radio-electronics. . 2005.

Игры ⚽ Поможем написать реферат

Смотреть что такое "algebra of traceless matrices" в других словарях:

  • Trace (linear algebra) — In linear algebra, the trace of an n by n square matrix A is defined to be the sum of the elements on the main diagonal (the diagonal from the upper left to the lower right) of A, i.e., where aii represents the entry on the ith row and ith column …   Wikipedia

  • Special linear group — In mathematics, the special linear group of degree n over a field F is the set of n times; n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion.This is the normal subgroup of the general… …   Wikipedia

  • ADE classification — The simply laced Dynkin diagrams classify diverse mathematical objects. In mathematics, the ADE classification (originally A D E classifications) is the complete list of simply laced Dynkin diagrams or other mathematical objects satisfying… …   Wikipedia

  • Nilpotent cone — In mathematics, the nilpotent cone of a finite dimensional semisimple Lie algebra is the set of elements that act nilpotently in all representations of In other words, The nilpotent cone is an irreducible subvariety of …   Wikipedia

  • Special unitary group — In mathematics, the special unitary group of degree n , denoted SU( n ), is the group of n times; n unitary matrices with determinant 1. The group operation is that of matrix multiplication. The special unitary group is a subgroup of the unitary… …   Wikipedia

  • Bianchi classification — In mathematics, the Bianchi classification, named for Luigi Bianchi, is a classification of the 3 dimensional real Lie algebras into 11 classes, 9 of which are single groups and two of which have a continuum of isomorphism classes. (Sometimes two …   Wikipedia

  • SL2(R) — In mathematics, the special linear group SL2(R) is the group of all real 2 times; 2 matrices with determinant one:: mbox{SL} 2(mathbb{R}) = left{ egin{bmatrix}a b c dend{bmatrix} : a,b,c,dinmathbb{R}mbox{ and }ad bc=1 ight}.It is a real Lie… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»